Species Tag:	19003	Name:	H2O-17
Version:	1		Water,
Date:	Jan. 1988		¹⁷ O isotope
Contributor:	E. A. Cohen		
	R. L. Poynter		
Lines Listed:	404	Q(300.0) =	178.813
Freq. $(GHz) <$	9975	Q(225.0) =	116.520
Max. J:	12	Q(150.0) =	63.959
LOGSTR0 =	-6.8	Q(75.00) =	23.270
LOGSTR1 =	-8.0	Q(37.50) =	8.616
Isotope Corr.:	-3.432	Q(18.75) =	3.044
Egy. $(cm^{-1}) >$	0.0	Q(9.375) =	1.259
$\mu_a =$		A=	830283.294
$\mu_b =$	1.8546	B=	435350.957
$\mu_c =$		C =	277511.176

The microwave and millimeter line measurements were taken from F. C. De Lucia and P. Helminger, 1975, J. Mol. Spect. **56**, 138, and G. Steenbeckeliers and J. Bellet, 1971, Compt. Rend. Acad. Sci. **273B**, 471. Combination-differences from new high-resolution infrared measurements of R. A. Toth, private communication, were used in a combined fit with the microwave data. The data set has been truncated at J=12. The dipole moment was assumed to be the same as for the parent molecular species. Splittings due to the ¹⁷O nucleus are not included in this calculation.

Two additional entries, with files labeled c019003o.* and c019003p.* are given for the separate Hydrogenic spin states of water (ortho and para). For the ortho states, an additional energy factor was used in the Hamiltonian to force the $J=1_{0,1}$ energy level to be the reference level (with zero energy). Separate partition sums for these states are given here:

Q(T)	$\mathrm{H}_{2}^{17}\mathrm{O}$ ortho	$\mathrm{H}_{2}^{17}\mathrm{O}$ para
Q(300.0) =	150.2858	44.6973
Q(225.0) =	101.7445	29.1318
Q(150.0) =	60.2543	15.9894
Q(75.00) =	27.5329	5.8209
Q(37.50) =	15.8202	2.2618
Q(18.75) =	11.4107	1.2033
Q(9.375) =	9.5363	1.0105