Species Tag:	26002	Name:	$^{12}\mathrm{C}_{2}\mathrm{H}_{2}$
Version:	1		Acetylene,
Date:	Sept. 2009		GS, ν_4 , $2\nu_4$, ν_5 , $2\nu_5$, $\nu_4 + \nu_5$
Contributor:	S. Yu		
	B. J. Drouin		
Lines Listed:	2066	Q(300.0) =	420.3041
Freq. $(GHz) <$	25210	Q(225.0) =	282.7134
Max. J:	90	Q(150.0) =	179.2419
LOGSTR0 =	-10.0	Q(75.00) =	89.2856
LOGSTR1=	-10.0	Q(37.50) =	44.9772
Isotope Corr.:	0.0	Q(18.75) =	22.8305
Egy. $(cm^{-1}) >$	0.0	Q(9.375) =	11.7671
$\mu_a =$	0.051	A =	
$\mu_b =$		B=	35274.9596
$\mu_c =$	0.051	C =	

The following states are included in this calculation: the ground state, ν_4 , $2\nu_4$, ν_5 , $2\nu_5$, $\nu_4 + \nu_5$. The vibrational levels are labeled as $V_4^{l_4}V_5^{l_5}$. The vibrational designations are as the following: 00 for 0^00^0 (${}^{1}\Sigma_g^{+}$); 01 for $1^{1}0^0$ (${}^{1}\Pi_g$); 02 for 0^01^1 (${}^{1}\Pi_u$), 03 for 2^20^0 (${}^{1}\Delta_g$), 04 for 2^00^0 (${}^{1}\Sigma_g^{+}$), 05 for $1^{1}1^1$ (${}^{1}\Sigma_u^{+}$), 06 for $1^{1}1^1$ (${}^{1}\Delta_u$); 07 for $1^{1}1^1$ (${}^{1}\Sigma_u^{-}$); 08 for $0^{0}2^0$ (${}^{1}\Sigma_g^{+}$); 09 for 0^02^2 (${}^{1}\Delta_g$). The experimental measurements were reported by Kabbadj et al. 1991, J. Mol. Spectrosc. **150**, 535. Yu et al., 2009, Astrophys. J. 705(1), 786-790.

A vibrational transition dipole moment of 0.051 D, which was determined with an uncertainty of 20% for the ν_5 - ν_4 difference band by Robert et al. (2007, Mol. Phys., **105**, 2009), was used for all the transitions because dipole moments for other bands are not available. The intensities for transitions in the ν_5 - ν_4 difference band are therefore uncertain to about 40%. The intensities for rotational lines in other vibrational bands should be viewed with more caution since there might be systematic errors. Note that our analysis included experimental data with $J_{max} = 43$ for the ground state $({}^{1}\Sigma_{g}^{+})$; 38 for $\nu_4({}^{1}\Pi_g)$; 41 for $\nu_5({}^{1}\Pi_u)$; 37 for $2\nu_4({}^{1}\Delta_g)$; 31 for $2\nu_4({}^{1}\Sigma_{g}^{+})$; 42 for $\nu_4 + \nu_5({}^{1}\Sigma_{u}^{+})$; 40 for $\nu_4 + \nu_5({}^{1}\Delta_u)$; 31 for $\nu_4 + \nu_5({}^{1}\Sigma_{u}^{-})$; 31 for $2\nu_5({}^{1}\Sigma_{g}^{+})$; 34 for $2\nu_5({}^{1}\Delta_g)$. Transitions up to J = 40 should be predicted reliably and should be found within 0 - 10 times the predicted uncertainties.