Species Tag:	26002	Name:	${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ Acetylene,
Version:	1		$\mathrm{GS}, \nu_{4}, 2 \nu_{4}, \nu_{5}, 2 \nu_{5}, \nu_{4}+\nu_{5}$ Date:
Sept. 2009			
Contributor:	S. Yu		
	B. J. Drouin	$\mathrm{Q}(300.0)=$	420.3041
Lines Listed:	2066	$\mathrm{Q}(225.0)=$	282.7134
Freq. (GHz) $<$	25210	$\mathrm{Q}(150.0)=179.2419$	
Max. J:	90	$\mathrm{Q}(75.00)=89.2856$	
LOGSTR0 $=$	-10.0	$\mathrm{Q}(37.50)=44.9772$	
LOGSTR1 $=$	-10.0	$\mathrm{Q}(18.75)=$	22.8305
Isotope Corr.:	0.0	$\mathrm{Q}(9.375)=11.7671$	
Egy. $\left(\mathrm{cm}^{-1}\right)>$	0.0	$\mathrm{~A}=$	
$\mu_{a}=$	0.051	$\mathrm{~B}=$	35274.9596
$\mu_{b}=$		$\mathrm{C}=$	
$\mu_{c}=$	0.051		

The following states are included in this calculation: the ground state, $\nu_{4}, 2 \nu_{4}, \nu_{5}$, $2 \nu_{5}, \nu_{4}+\nu_{5}$. The vibrational levels are labeled as $V_{4}^{l_{4}} V_{5}^{l_{5}}$. The vibrational designations are as the following: 00 for $0^{0} 0^{0}\left({ }^{1} \Sigma_{g}{ }^{+}\right) ; 01$ for $1^{1} 0^{0}\left({ }^{1} \Pi_{g}\right) ; 02$ for $0^{0} 1^{1}\left({ }^{1} \Pi_{u}\right), 03$ for $2^{2} 0^{0}\left({ }^{1} \Delta_{g}\right), 04$ for $2^{0} 0^{0}\left({ }^{1} \Sigma_{g}^{+}\right), 05$ for $1^{1} 1^{1}\left({ }^{1} \Sigma_{u}{ }^{+}\right), 06$ for $1^{1} 1^{1}\left({ }^{1} \Delta_{u}\right) ; 07$ for $1^{1} 1^{1}$ $\left({ }^{1} \Sigma_{u}{ }^{-}\right) ; 08$ for $0^{0} 2^{0}\left({ }^{1} \Sigma_{g}{ }^{+}\right) ; 09$ for $0^{0} 2^{2}\left({ }^{1} \Delta_{g}\right)$. The experimental measurements were reported by Kabbadj et al. 1991, J. Mol. Spectrosc. 150, 535. Yu et al., 2009, Astrophys. J. 705(1), 786-790.

A vibrational transition dipole moment of 0.051 D , which was determined with an uncertainty of 20% for the $\nu_{5}-\nu_{4}$ difference band by Robert et al. (2007, Mol. Phys., 105, 2009), was used for all the transitions because dipole moments for other bands are not available. The intensities for transitions in the $\nu_{5}-\nu_{4}$ difference band are therefore uncertain to about 40%. The intensities for rotational lines in other vibrational bands should be viewed with more caution since there might be systematic errors. Note that our analysis included experimental data with $J_{\max }=43$ for the ground state $\left({ }^{1} \Sigma_{g}{ }^{+}\right) ; 38$ for $\nu_{4}\left({ }^{1} \Pi_{g}\right) ; 41$ for $\nu_{5}\left({ }^{1} \Pi_{u}\right) ; 37$ for $2 \nu_{4}\left({ }^{1} \Delta_{g}\right) ; 31$ for $2 \nu_{4}\left({ }^{1} \Sigma_{g}{ }^{+}\right)$; 42 for $\nu_{4}+\nu_{5}\left({ }^{1} \Sigma_{u}{ }^{+}\right) ; 40$ for $\nu_{4}+\nu_{5}\left({ }^{1} \Delta_{u}\right) ; 31$ for $\nu_{4}+\nu_{5}\left({ }^{1} \Sigma_{u}{ }^{-}\right) ; 31$ for $2 \nu_{5}\left({ }^{1} \Sigma_{g}{ }^{+}\right) ; 34$ for $2 \nu_{5}\left({ }^{1} \Delta_{g}\right)$. Transitions up to $J=40$ should be predicted reliably and should be found within 0-10 times the predicted uncertainties.

