Species Tag: Version: Date: Contributor:	30011 1 Jan. 1996 J. C. Pearson	Name:	NO+ Nitrosyl cation, X $^1\Sigma^+$
Lines Listed:	154	Q(300.0) =	315.814
Freq. (GHz) <	3675	Q(225.0) =	
Max. J:	30	Q(150.0) =	
LOGSTR0 =	-8.0	Q(75.00) =	79.685
LOGSTR1 =	-8.0	Q(37.50) =	40.351
Isotope Corr.:	0.0	Q(18.75) =	20.699
Egy. $(cm^{-1}) >$	0.0	Q(9.375) =	10.898
$\mu_a =$	0.5	A=	
$\mu_b =$		B=	59597.1
$\mu_c =$		C=	

The experimental measurements were reported by W. C. Bowman, E. Herbst and F. C. De Lucia, 1982, J. Chem. Phys. **77**, 4261. The dipole moment has been calculated to be 0.66(38) Debye by Ch. Jungen and H. Lefebvre-Brion, 1970, J. Mol. Spect. **33**, 520. Another calculation by F. P. Billingsley, 1973, Chem. Phys. Lett. **23**, 160 placed the value at 0.31 Debye. An intermediate value of 0.5 was used in the calculation.