Species Tag:	36005	Name:	HCl^+
Version:	2		Chloroniumyl cation
Date:	Dec. 2016		$v = 1 \leftarrow 0$
Contributors:	B. J. Drouin		$^{2}\Pi_{1/2} \leftarrow^{2}\Pi_{3/2}$
			$^{2}\Sigma \leftarrow ^{2}\Pi$
Lines Listed:	2583	Q(300.0) =	196.9653
Freq. $(GHz) <$	86000	Q(225.0) =	147.6317
Max. J:	40	Q(150.0) =	102.4779
LOGSTR0 =	-8.0	Q(75.00) =	59.9414
LOGSTR1 =	-10.0	Q(37.50) =	40.3231
Isotope Corr.:	-0.122	Q(18.75) =	33.1500
Egy. $(cm^{-1}) >$	0.0	Q(9.375) =	31.9340
$\mu_0 =$	1.0	A =	
$\mu' =$	0.1959	B=	293443.75
$\mu_{el} =$	0.13	C =	

The work of H. Gupta, B. J. Drouin, & J. C. Pearson, 2012, ApJ, **751**, L38 and the optical spectra in W. D. Sheasley, 1972, Ph.D. Dissertation, The Ohio State University; Ann Arbor, MI. is expanded to include vibrational data from Doménech, Drouin, Cernicharo *et al.* ApJL 833 L32 (2016). The transition dipole moments for infrared (μ' and optical (μ_{el}) are calculated by A. Pradhan *et al.* 1991, J. Chem. Phys, **95**, 9010. The magnetic dipole, which predicts fine structure transitions in the mid and far-ir was taken to be 1 Bohr magneton. The state identifiers v = 80 and v = 81 refer to the ground and first excited vibrational levels, respectively. The $^{2}\Sigma$ ground vibrational state has a state identifier of 40, and the state identifier 0 is the $^{2}\Pi$ vibrational ground state without hyperfine splitting.

state identifier (v)	state	HFS
0	$^{2}\Pi v = 0$	no
40	$^{2}\Sigma v = 0$	no
80	$^{2}\Pi v = 0$	yes
81	$^{2}\Pi$ v = 1	yes