Species Tag:	41010	Name:	CH3CN
Version:	2		Acetonitrile
Date:	Mar. 2014		Methyl Cyanic
Contributor:	B.J. Drouin		$\nu_{8}=1$
		$\mathrm{Q}(300.0)=$	14683.6324
Lines Listed:	5248	$\mathrm{Q}(225.0)=8045.2161$	
Freq. (GHz) $<$	1832	$\mathrm{Q}(150.0)=$	3807.7474
Max. J:	99	$\mathrm{Q}(75.00)=$	1267.6721
LOGSTR0 $=$	-12.0	$\mathrm{Q}(37.50)=$	449.0825
LOGSTR1 $=$	-10.0	$\mathrm{Q}(18.75)=$	164.3173
Isotope Corr.:	0.	$\mathrm{Q}(9.375)=$	64.0956
Egy. $\left(\mathrm{cm}^{-1}\right) \gg$	0.0	$\mathrm{~A}=$	158099.0
$\mu_{a}=$	3.78197	$\mathrm{~B}=$	9198.9
$\mu_{b}=$	$\mathrm{C}=$	B	
$\mu_{c}=$			

The experimental measurements are from: D. Boucher, J. Burie, J. Demaison, A. Dubrulle, J. Legrand, and B. Segard, 1977, J. Mol. Spect. 64, 290; A. Bauer and S. Maes, 1969, J. Phys. 30, 169; S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. 58, 3155; S. G. Kukolich, G. Lind, M. Barfield, L. Faehl and J. L. Marshall, 1978, J. Am. Chem. Soc. 100, 7155; S. G. Kukolich, 1982, J. Chem. Phys. 76, 97; P. Venkateswarlu, J. G. Baker and W. Gordy, 1961, J. Mol. Spectrosc. 6, 215. D. Boucher, J. Burie, A. Bauer, A. Dubrulle and J. Demaison, 1980, J. Phys. Chem. Ref. Data 9, 659; F. S. Pavone, L. R. Zink, M. Prevedelli, M. Inguscio and L. Fusina, 1990, J. Mol. Spectrosc. 144, 45; W. Chen, R. Bocquet, D. Boucher, J. Demaison and G. Wlodarczak, 1991, J. Mol. Spectrosc. 150, 470; F. X. Brown, D. Dangoisse, and J. Demaison, 1988, J. Mol. Spectrosc. 129, 483; R. Bocquet, G. Wlodarczak, A. Bauer and J. Demaison, 1988, J. Mol. Spectrosc. 127, 382; F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus and G. Winnewisser, 1995, Z. Naturforsch. 50a, 1182; and J. C. Pearson and H. S. P. Müller, 1996, Astrophys. J. 471, 1067.

The constants A, DK, HK cannot be determined from the microwave spectra and were fixed to the IR measurements of: R. Anttila, V.-M. Horneman, M. Koivussaari and R. Paso, 1993, J. Mol. Spectrosc. 157, 198. M. Koivussaari, V.-M. Horneman and R. Anttila, 1992, J. Mol. Spectrosc. 152, 377.

The dipole moment for the ground state was reported by J. Gadhi, A. Lahrouni, J. Legrand and J. Demaison, 1995, J. Chim. Phys. 92, 1984. The $n u_{8}$ dipole was scaled from the ground state value by the amount in J. K. Messer and J. A. Roerts, 1982, J. Mol. Spectrosc. 96, 351.

The v quantum numbers assign the following: 0 is the ground state, 1 is the $\mathrm{K}^{*}{ }_{1} 00 \mathrm{l}$ doublet of $n u_{8}=1,2$ is the $\mathrm{K}^{*} \mathrm{l}_{\dot{c}} /=0$ doublet of $n u_{8}=1$. The $\mathrm{v} 8=1$ (CCN bending) band energy of $365.015965(12) \mathrm{cm}^{-1}$ (Koivusaari et al.) has been included
in the calculation. The constants Pz^{3} and Pz^{5} off diagonal were fixed to the values of Koivusaari et al..

The version 2 catalog is the same Hamiltonian as version 1, except the hyperfine calculation has been removed and a vibrational partition function consistent with the ground state entry was utilized.

