Species Tag: Version: Date: Contributor:	47005 1 Dec. 1996 J. C. Pearson	Name:	PO+ Phosphorus Oxide Ion nu=0,1,2,3,4 $^{1}\Sigma^{+}$
Lines Listed: Freq. (GHz) < Max. J: LOGSTR0= LOGSTR1= Isotope Corr.: Egy. (cm ⁻¹) > $\mu_a =$ $\mu_b =$	239 2337 50 -14.0 -14.0 0.0 0.0 3.44	$\begin{array}{l} Q(300.0) = \\ Q(225.0) = \\ Q(150.0) = \\ Q(75.00) = \\ Q(37.50) = \\ Q(18.75) = \\ Q(9.375) = \\ A = \\ B = \end{array}$	133.3087 66.8106 33.5707
$\mu_c =$		C=	20000.0

The data were taken from: R. H. Petrmichl, K. A. Peterson and R. C. Woods, 1990, J. Chem. Phys. **94**, 3504. Data through nu=11 was used in the analysis, but predictions were made only through nu=4. The vibrational energies were fixed to the values calculated from the Dunham relationships.

A dipole moment of 3.44 Debye was calculated by Petrmichl, Peterson and Woods. It has been assumed for all the vibrational states.