Species Tag: Version: Date: Contributor:	47006 1 Jan. 1997 J. C. Pearson	Name:	P0 Ground ${}^2\Pi_r$ State
Lines Listed: Freq. (GHz) < Max. J: LOGSTR0= LOGSTR1= Isotope Corr.:	743 2631 60 -10.0 -10.0 -0.0	Q(300.0) = Q(225.0) = Q(150.0) = Q(75.00) = Q(37.50) = Q(18.75) =	1539.8440 1067.6214 643.0602 293.6296 146.5057 74.8963
Egy. $(cm^{-1}) > \mu_a = \mu_b = \mu_c =$	0.0 1.0	Q(9.375)= A= B= C=	39.1587 21899.5

The data were taken from: K. Kawaguchi, S. Saito and E. Hirota, 1983, J. Chem. Phys. **79**, 629. The ground state A value was fixed to the electronic value of R. D. Verma and S. R. Singhal, 1975, Can. J. Phys **53**, 411. The frequency of the $Pi_{3/2}$ J=2.5-1.5, F=3-2 given at 109823.923 is believed to be the 109829.923 used in the analysis.

The dipole is unknown so a unit dipole (1.0 Debye) was used in the calculations.