The calculation is based on the method described in Pearson et al. 2012, Journal of Molecular spectroscopy, in press. DOI 10.1016/j.jms.2012.06.012. Additional data from

was used in the analysis. CH$_2$DOH is an asymmetric top with a ground state comprised of three sub-states e_0, e_1 and o_1. These are denoted with $v=0,1,2$, respectively. The lower K_a levels are strongly interacting and should not be trusted beyond $J=30$ where the stated accuracy will be much worse than reality. K_a values to 10,9,9 in $v=0,1,2$ were connected. Calculated levels with higher K_a value will deviate strongly in the absolute energy. This means any transition changing K_a above $K_a=10,9,9$ in $v=0,1,2$ will not be accurate with the exception of the e_1 $K_a=11$ to o_1 $K_a=10$ band where the relative energies are correct. The a-type R branches to K=11 were
included in the data and are calculated reasonable well. Because of the poor extrapolative power of the model the accuracy of predictions rapidly deteriorates above 2 THz and for $K_a > 10.9,9$.

The intensites were calculated with the first order Fourier term of the dipole from normal methanol. The strongly allowed bands are reasonably well reproduced, but the weaker ones are not as well re-produced. Extreme caution should be used in determining columns (or concentrations) directly from b-type and c-type transitions as significant errors can occur. The a-type transitions should be much more reliable for column determinations.