This entry is a combined CDMS and JPL entry. The ν_8 entry is now a separate catalog entry under 41010. The latest combined fit has been reported by (1) H. S. P. Müller; B. J. Drouin, and J. C. Pearson, 2009, *Astron. Astrophys.* **506**, 1487. This work provides new data in the 1.58-1.63THz region. Additional, extensive data between 91 and 1192 GHz were published in (2) G. Cazzoli and C. Puzzarini, 2006, *J. Mol. Spectrosc.* **240**, 153. As in that work, additional data were taken from (3) S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, *J. Chem. Phys.* **58**, 3155; from (4) S. G. Kukolich, 1982, *J. Chem. Phys.* **76**, 97; and from (5) D. Boucher, J. Burie, J. Demaison, A. Dubrulle, J. Legrand, and B. Segard, 1977, *J. Mol. Spectrosc.* **64**, 290. The purely K-dependent terms were determined through $\Delta K = 3$ infrared loops from (6) R. Anttila, V.-M. Horneman, M. Koivusaari, and R. Paso, 1993, *J. Mol. Spectrosc.* **157**, 198. The predictions should be reliable through the exception of $K > 14$ transitions between about $J = 36$ and 48 which are perturbed by a weak resonant interaction with $\nu_8 = 1$. 14N hyperfine splitting may be resolvable at low values of J and possibly at the highest K. Therefore, predictions with http://spec.jpl.nasa.gov/catalog/hfs/c041001_hfs.cat hyperfine splitting have been provided up to $J^\prime = 9$ (184 GHz). The partition function does not include the spin-multiplicities of 14N. Therefore, partition function values have to be multiplied by 3 when considering 14N hyperfine splitting. Vibrational contributions have been considered in the calculation of the partition function for states up to about 1200 cm$^{-1}$. Higher vibrational states contribute to less than 1% each at 300 K. Values for the ground state are given in parentheses. Additional information on http://www.ph1.uni-koeln.de/site/vorhersagen/daten/CH3CN/CH3CN/CH3CN.Q vibrational states is also available. The dipole moment was determined by (7) J. Gadhi, A. Lahrouni, J. Legrand, and 1995, *J. Chem. Phys.* **92**, 1984.