Species Tag: Version: Date: Contributor:	58001 1 Nov. 1993 E. A. Cohen	Name:	CCS-34 Dicarbon monosulfide $CC^{34}S$, X $^{3}\Sigma^{-}$
Lines Listed: Freq. (GHz) < Max. J: LOGSTR0= LOGSTR1= Isotope Corr.: Egy. (cm ⁻¹) > $\mu_a =$	565 1988 99 -8.0 -1.376 0.0 2.9	$\begin{array}{l} Q(300.0) = \\ Q(225.0) = \\ Q(150.0) = \\ Q(75.00) = \\ Q(37.50) = \\ Q(18.75) = \\ Q(9.375) = \\ A = \end{array}$	2167.408 1427.520 688.832 321.694 141.864
$ \begin{array}{l} \mu_b = \\ \mu_c = \end{array} $		B=C=	6335.88385(35)

The measurements were taken from S. Yamamoto *et al.*, 1990, Astrophys. J. **361**, 318. The dipole moment was quoted in this paper from an *ab initio* calculation by A. Murakami. The relative weights of the reported measurements have been chosen to reproduce the molecular parameters in the referenced paper. An assigned uncertainty of 20 kHz for a line given unit weight in the paper produces approximately the same 1σ uncertainties for calculated transitions as reported in the reference. Note that N is not a good quantum number and that in this calculation the naming of the $N_J = 2_1$ and 0_1 is the reverse of that in the reference.